Welcome to WordPress. This is your first post. Edit or delete it, then start writing!
New Website and activities
Multiple network models for complex online social network analysis – Syllabus
Matteo Magnani, Institute of Information Science and Engineering (ISTI), CNR, Italy
Luca Rossi, Dept. of Communication Studies and Humanities, University of Urbino, Italy
Tutorial summary
The last two decades have witnessed the proliferation of several Social Network Sites (SNSs).
While it is not clear whether only one or few big SNSs will survive in the near future, or multiple
specialized services will still exist separately, we can claim that a model based on a single layer
of social connections will never be able to accurately describe our complex and layered online
social experience: while Facebook connections can explain a lot about a user’s social life, his/her
professional network may require an analysis of LinkedIn connections and his/her information
consumption practices might be better explained by looking at his/her Twitter network.
Decades before the advent of SNSs a similar layered scenario had already been described by
sociologists like Goffman for which individuals perform on multiple stages, creating a sort of
fragmented public personality whose different components relate to different audiences (and thus
networks) and anthropologists like Gluckman who observed human relationships characterized
by their multiplexity. While this view has been widely used by early digitalculture researchers, it
has not been regularly applied together with Social Network Analysis (SNA) methods to study
online SNSs.
However recent works have redefined the foundations of multilayer network models highlighting
the opportunity to apply SNA approaches to a wide range of complex social relationships as well
as study the mutual influences between different coexisting networks.
This tutorial will review the main theoretical models, data gathering methods and analytical tools
to deal with multiple networks and to understand how a multilayer network perspective may
change our knowledge of user behaviours. Multiple online network analysis is a recent and
growing field, with longstanding theoretical bases rooted in classical sociological analysis and
multiplex social network analysis methods. As such, it presents numerous research opportunities both for experienced researchers and young academics looking for a field of
specialization.
Prerequisites and outcomes
Participants will benefit from a general knowledge of the basic concepts in Social Network
Analysis, in particular centrality measures. However, the required concepts will be briefly recalled
as needed during the tutorial.
The main intended learning outcomes are the following:
Know the historical roots of multiple network analysis.
Recognize the specific aspects emphasized by different models for multiple networks.
Theorize the main sociocomputational challenges of multiple network analysis.
Perform multiple network analysis tasks on real data.
Identify the most promising research directions in the area.
Detailed course description
The tutorial is divided into five main sections. We indicate the general topic of each section with a
few selected suggested readings a more exhaustive list will be distributed to the participants
during the tutorial.
1) Historical foundations of Multiple Network Analysis
While the topic of multiple network analysis has recently seen a rise in general interest, largely
consequent to the new wave of interest that has been addressed to single layer networks from
many different research fields, it can be rooted into a longstanding research tradition. In order to
introduce the topic we will examine the early literature that in many different research areas (from
anthropology to sociology) considered the multiplex nature of human beings. These studies,
spanning several kinds of communication, have introduced the idea that it may not be
methodologically correct to analyze a partial network by isolating just a specific kind of tie.
Starting from these premises we will show how social sciences have often considered
multiplexity even out of the context of social network analysis.
Suggested readings:
Skvoretz J and Agneessens F (2007) Reciprocity, multiplexity, and exchange: Measures. Quality
& quantity, Springer, 41(3).
Minor MJ (1983) New directions in multiplexity analysis. Applied network analysis.
2) Models & measures for Multiple Networks
In this section we will introduce the main models and measures. We will briefly review models
allowing multiple node types (also called heterogeneous or multitype networks), models allowing
multiple relationship types (also called multidimensional networks), multislice models and
models explicitly representing the coexistence of multiple networks (also called multilayer(ed)
or multistratum networks). Then we will focus on the main measures. Here we will introduce two
different approaches, respectively reducing multiple networks to a single traditional network and
keeping the layers separate. We will define and exemplify degree and neighborhood centrality,
dimension relevance, multilayer distance.
Suggested readings:
Berlingerio M, Coscia M and Giannotti F (2011) Finding and Characterizing Communities in
Multidimensional Networks. In: 2011 International Conference on Advances in Social Networks
Analysis and Mining, IEEE computer Society.
Magnani M and Rossi L (2011) The MLmodel for multilayer social networks. In: The 2011
International Conference on Advances in Social Network Analysis and Mining, Los Alamitos, CA,
USA, IEEE computer Society.
3) Formation & Evolution of Multiple Network
Network formation models are among the most important tools in Network Science and Social
Network Analysis. A typical application of artificially generated networks is to provide null models
that can be used to test new measures and make comparisons with real networks, so that
significant patterns can be highlighted in the real data. In addition, these models are useful to test
hypotheses on the dynamics underlying network evolution. However, most existing generative
models have been developed to describe the evolution of single networks. In this section we will
review some very recent works modelling the coevolution of multiple networks.
Suggested readings:
B. Podobnik, D. Horvatić, M. Dickison, and H. E. Stanley (2012) Preferential Attachment in the
Interaction between Dynamically Generated Interdependent Networks, Europhys. Lett. (EPL) 100,
50004
Magnani M and Rossi L (2013) Formation of multiple networks. In: Social Computing,
BehavioralCultural Modeling and Prediction, Springer.
4) Clustering & Community detection in Multiple Networks
Although several community detection algorithms for single social networks exist, the discovery
of communities spanning multiple networks is still a largely unexplored topic. At the same time,
some recent works have identified new computational approaches to tackle this complex
problem. In this section we will present a selection of community detection methods for multiple
networks, highlighting the research context where they emerged and showing applications to real
data.
Suggested readings:
Mucha PJ, Richardson T, Macon K, et al. (2010) Community Structure in TimeDependent,
Multiscale, and Multiplex Networks. Science, American Association for the Advancement of
Science, 328(5980), 876–878, Available from: http://dx.doi.org/10.1126/science.1184819.
Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl (2012) Mining coherent
subgraphs in multilayer graphs with edge labels. KDD.
5) Multiple Network Data: Retrieval and Ethical issues
The collection of well structured multiple network data can be a difficult task. Within this last part
of the tutorial we are going through some of the related problems. We will also present some
available multiple network datasets. At the same time we will present some thoughts on the
practical and ethical aspects involved in multiple network data collection.
Biographies
Matteo Magnani graduated in Computer Science at the University of Bologna in 2002 (110/110
with mention). He studied at the University of Marne la Vallée (undergraduate level) and the
Imperial College London (postgraduate research level). In 2006 he obtained a PhD in Computer
Science (Bologna) where in 2011 he also graduated in Violin (110/110 with mention). He has
received a Rotary Prize for the best student of the Science Faculty (UniBO), and his mother is
very proud of him (or at least this is what she officially says). Until May 2012 he was an assistant
professor (RTD) at the Dept. of Computer Science, University of Bologna and he has held a
position at research assistant professor level at the Data Intensive Systems group, Dept. of
Computer Science, Aarhus University, Denmark. He is currently at KDD Lab, ISTI, CNR, Pisa
(Italy), and since August 2013 he will be Associate Professor at the Department of Computing
Science, Uppsala University, Sweden.
His main research interests span Database and Information Management systems, specifically
uncertain information management and multidimensional database queries, Network Science
and Social Computing. He has written around 1.5 Kg of papers on these topics (when printed on
heavy A4 size sheets). He has several years of teaching experience and has obtained the
Pedagogical Training Certificate at Aarhus University.
Luca Rossi is Assistant Professor of Media Analysis at the Department of Communication
Studies and Humanities, University of Urbino Carlo Bo, Italy. He works on SNA techniques
applied to Social Media data and to the analysis of audience practices. He presented his work in
many international conferences, among others: IR, SBP, ASONAM, SunBelt, ICWSM. He has
teaching experience both at undergraduate level where he teaches Sociology of New Media and
Media Analysis and at the graduate level where he teaches Social Network Analysis techniques
as a compulsory class of the PhD program in Sociology of Communication at the University of
Urbino. Since August 2013 he will be at IT University in Copenhagen, Denmark.
Matteo and Luca have a growing experiences in the field. In 2011 they won the Best Paper
Award at the ASONAM conference for their seminal paper “The MLmodel for multilayer social
network analysis” where they defined concepts and methods to study multilayer online social
networks. In 2012 they organized the first International Workshop on Complex Social Network
Analysis, they are organizing the Symposium on Multiple Network Analysis and Mining (satellite
event of NetSci 2013) and they have authored the entry on Data Structures and methods for
mining multiple social networks for the upcoming Encyclopedia of Social Network Analysis and
Mining (Springer). Putting together two different backgrounds (respectively, computational and
sociological) they will also be able to provide insights on opportunities and challenges of doing
interdisciplinary research on these topics. Together, they have successfully attracted funding
from Working Capital (Telecom Italia), PRIN and FIRB (MIUR Italian Ministry for education,
University and Research) schemes.
Contact information
Matteo Magnani: ISTI, CNR, Via Moruzzi 1, Pisa, IT. email matteo.magnani@isti.cnr.it, phone +39
333 3833579.
Luca Rossi: Dept. of Communication Studies and Humanities, Via Saffi 15, 61029 Urbino, IT.
email luca.rossi@uniurb.it phone +39 0722 305726
Symposium on Multiple Network Modeling, Analysis and Mining
On June 3rd we’re organizing – together with friends and colleagues – a Satelite Symposium at NetSci2013. The symposium will be focused on Multiple Network Modeling, Analysis and Mining and it will see the participation of great researchers from many different research areas.
more info: http://multiplenetworks.netsci2013.net/
Sunbelt 2013
Also this year researchers of the IMPACT project will be at the SunBelt conference to talk about multiple network analysis. In particular, we will give two talks on our recent research themes: multiple network metrics and multiple network formation.
2 Papers accepted at SBP2013
We will soon go back to the SBP conference to present our two most recent works, both on the study of multiple networks. The first presents a new concept of DISTANCE between nodes in a layered context, where the different layers and layer switches are taken into consideration. The second introduces the problem of multiple network formation, and presents a first model trying to explain the underlying dynamics.
International Workshop on Complex Social Network Analysis (CSNA 2012) @ ASONAM12
On Sep. 26th we’ve been in Istanbul for the ASONAM 2012 conference. The Conference was interesting with many good papers and (may too many) different sessions. Beside attending the conference we had a extra motivation to be there. We were the organizers of the first International Workshop on Complex Social Network Analysis (together with Prof. Przemyslaw Kazienko, Wroclaw University of Technology, Poland). The workshop was a success and we’ve been pretty satisfied with the quality of the papers. One of our goals was to bring together – under the forming notion of complex social networks – a wide range of scholars coming from many different areas. Judging the results obtained this year we can be satisfied even if the computer scientists are still the majority.
So that’s the plan for the second edition: more Sociologists and Social Scientists. And you really should start working on your paper because ASONAM2013 will be at the Niagara Falls!
ICWSM12 conference paper available
Thanks to the great AAAI digital library the ICWSM12 conference version of our paper “Conversation Practices and Network Structure in Twitter” is now available. You really should check out all the papers (short and full) that have been presented in Dublin.
Here you can see the poster that we’ve presented there:
Conversation practices and network structure in Twitter – SIGSNA paper at ICWSM12
Our paper Conversation practices and network structure in Twitter has been accepted as poster paper for the upcoming International AAAI Conference on Weblogs and Social Media (ICWSM12) that will be held in Dublin in June. We are really happy to be part of the conference of many reasons. On one side ICWSM is an interesting venue where researchers coming both from the computer sciences and from the social sciences have the opportunity to come together presenting their own researches and approaches. As we know from our personal experience that is not an easy dialogue but it is really valuable.
At the same time we are really happy about our paper Conversation practices and network structure in Twitter that deals with an intriguing and still largely unexplored aspect of Twitter: if and why the participation to hashtag conversation leads to the acquisition of new followers. While the topic might seem very specific it might be a first step toward the construction of connections between those researches based on the analysis of hashtag-based conversation and those based on the analysis of following network.
We are going to publish – as usual – a preprin version of the paper as soon as possible.Our paper Conversation practices and network structure in Twitter has been accepted as poster paper for the upcoming International AAAI Conference on Weblogs and Social Media (ICWSM12) that will be held in Dublin in June. We are really happy to be part of the conference of many reasons. On one side ICWSM is an interesting venue where researchers coming both from the computer sciences and from the social sciences have the opportunity to come together presenting their own researches and approaches. As we know from our personal experience that is not an easy dialogue but it is really valuable.
At the same time we are really happy about our paper Conversation practices and network structure in Twitter that deals with an intriguing and still largely unexplored aspect of Twitter: if and why the participation to hashtag conversation leads to the acquisition of new followers. While the topic might seem very specific it might be a first step toward the construction of connections between those researches based on the analysis of hashtag-based conversation and those based on the analysis of following network.
We are going to publish – as usual – a preprin version of the paper as soon as possible.
Upcoming conferences and activities
After some quite time we can now update the list of the upcoming event and presentations. March will be a busy period with a major conference and two very interesting workshops where we are going to presents the new research lines we’re carrying on this year. Between the 12th and the 18th of March we are going to attend the XXXII Sunbelt conference at Redondo Beach, CA. During the conference we’re presenting some new empirical data about on the Multy-Layer Model for SNS analysis.
As soon as we’ll be back in Europe we will attend the 2nd Düsseldorf Workshop on Interdisciplinary Approaches to Twitter Analysis (#diata12) where we will introduce our new research aimed at understanding how the Twitter network structure evolves according to the social interaction that takes place between the users (we hope to be able to post more about this really soon).
After some quite time we can now update the list of the upcoming event and presentations. March will be a busy period with a major conference and two very interesting workshops where we are going to presents the new research lines we’re carrying on this year. Between the 12th and the 18th of March we are going to attend the XXXII Sunbelt conference at Redondo Beach, CA. During the conference we’re presenting some new empirical data about on the Multy-Layer Model for SNS analysis.
As soon as we’ll be back in Europe we will attend the 2nd Düsseldorf Workshop on Interdisciplinary Approaches to Twitter Analysis (#diata12) where we will introduce our new research aimed at understanding how the Twitter network structure evolves according to the social interaction that takes place between the users (we hope to be able to post more about this really soon).